SunTunTech project analyse fishing behaviour to reduce fuel consumption

An article written by members of SunTunTech project, and led by AZTI, about comparing fish aggregating device (FAD) and free-swimming school (FSC) fishing strategies in tropical tuna purse seiner reveal that: 1) Cruising is the most dominant activity in a fishing trip of these fleets; 2) Main engine consumes 75% of the total fuel consumption; 3) FAD fishing often in more fuel intensive due to longer trips aiming at the FADs with higher biomass without considering distance; 4) FAD fishing presents higher success than FSC; 5)  both FAD and FSC fishing are more energy efficient than longline, trolling, or pole and line fisheries for Atlantic tuna, but similar or slightly less efficient than Maldivian pole and liners.

Read the original work here:


Towards a framework for fishing route optimization decision support systems: Review of the state-of-the-art and challenges

Route optimization methods offer an opportunity to the fisheries industry to enhance their efficiency, sustainability, and safety. However, the use of route optimization Decision Support Systems (DSS), which have been widely used in the shipping industry, is limited in the case of fisheries. In the first part, this work describes the fishing routing problems, reviews the state-of-the-art methods applied in the shipping industry, and introduces a general framework for fishing route optimization decision support systems (FRODSS). In the second part, we highlight the existing gap for the application of DSS in fisheries, and how to develop a FRODSS considering the different types of fishing fleets. Finally, and using the diverse Basque fishing fleet as a case study, we conclude that fishing fleets can be summarized into four main groups whose fishing routes could be optimized in a similar way. This characterization is based on their similarities, such us the target species, fishing gear, and the type and distance to the fishing grounds. These four groups are: (i) small-scale coastal fleet; (ii) large-scale pelagic fleet; (iii) large-scale demersal fleet; and (iv) the distant-water fleet. Distant-water vessels are currently the fleet that can more easily benefit from FRODSS, and they are used as an example here. However, the rest of the fleets could also benefit through adequate adaptation to their operation characteristics, driven by their specific fishing gear and target species.

Download here ->

Read the original work here: